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Properties of reducible polynomials 

1 Introduction 
This paper describes properties of binary polynomials over the finite field F2. Presented 

facts were obtained by tests. If p(x) of degree n is reducible, then the set of all 

polynomials of degree <n contains several groups with respect to multiplication modulo 

p(x). Properties of these groups are described in Section 3. In Section 4 is presented 

a polynomial factorization algorithm. In Section 2 we give some well-known facts 

concerning finite fields GF(p) and GF(2
n
), which are essential to understand the 

presented algorithm. In Section 5 we provide an example of contemporary use 

of irreducible polynomials in cryptography. They are used, for example, 

in cryptosystems based on elliptic curves. 

2 Finite fields GF(p) and GF(2
n
) 

Elliptic curves (used in contemporary cryptography) are defined by cubic equations 

over a given finite field. We give essential facts to define them over the field GF(2
n
). 

The set Zn (n∈Z+) of integers {0, 1, …, n-1}, together with the arithmetic operations 

(of addition and multiplication) modulo n, is a commutative ring with a multiplicative 

identity. Any integer b∈Zn has a multiplicative inverse if and only if b is relatively 

prime to n. Thus, in the set Zp (p∈P, where P denotes the set of prime numbers) for each 

nonzero element there exists a multiplicative inverse. The set Zp together with the 

arithmetic operations modulo p is a finite field. We denote it by GF(p) or Fp (p∈P). 

However, for a finite field F=<F, ⊕, ⊗; 0, 1> we denote the multiplicative group 

by F*=<F-{0}, ⊗; 1>. 

The field GF(2n) (also denoted n2
F ) consists of 2n polynomials of degree <n over the 

field F2. We identify elements of GF(2
n
) with n-bit binary strings of the form (an-1, 

...,a1,a0), ai∈{0,1}, i∈{0,1,...,n-1}. A generator of 
*
2nF  is an element g such that powers 

g
k
 (k=0, …, 2

n
-2) determine all the elements of 

*
2nF . 

Arithmetic operations on elements of GF(2n) follow the ordinary rules of polynomial 

arithmetic in which coefficients belong to F2. Additionally, multiplication results are 

reduced modulo some irreducible polynomial p(x) of degree n. That is, we divide them 

by p(x) and keep the remainder. For a polynomial f(x), the remainder is defined as r(x) 

= f(x)mod p(x) (cf. [10]). 

 (an-1,...,a1,a0)+(bn-1,...,b1,b0)=(an-1+bn-1,…,a1+b1,a0+b0), 

 (an-1,...,a1,a0)*(bn-1,...,b1,b0)=(rn-1,...,r1,r0), 

where (rn-1,...,r1,r0) represents the remainder after division the product of two 

polynomials a(x)=an-1x
n-1

+ ...+a1x+a0 and b(x)=bn-1x
n-1

+...+b1x+b0 by p(x). 
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It is convenient when we can use the polynomial f(x)=x (binary g=(00..10)) to the 

construction of the field GF(2
n
). Multiplication by x can be realized as 1-bit left shift 

followed by the reduction modulo p(x) (if necessary). But for some irreducible 

polynomials p(x)∈F2[x], f(x)=x is not a generator of the cyclic group *
2nF  

(e.g. p(x)=xn+xn-1+...+x+1 (for n>2) (cf. [6]), (1001001), (1010111), (1110101)). 

Addition (and subtraction) of polynomials (in GF(2n)) corresponds to a bitwise XOR 

operation. For multiplication of two elements in GF(2n) we use the equality  

g r *g t = g )12mod()tr( n −+ . Exponentiation is carried out as follows. Let a=g r , then  

a t = g )12mod()t*r(
n − . Division (in GF(2n)) by a polynomial a(x)≠0 can be realized as 

multiplication by the multiplicative inverse of a(x), i.e. b/a = b*a 1− , where a 1− =a 22
n −  

(cf. [6]). If all the elements of GF(2
n
) are stored on the indexed list A, we can find 

a multiplicative inverse of A[i] in the position A[2
n
-1-i]. The above-mentioned facts are 

taken from publications [6, 3, 9, 7] and [10]. 

3 Properties of reducible polynomials 
This section contains observations and conclusions (concerning the properties 

of reducible polynomials) based on test results. The set of all binary sequences (except 

for zero) of length n is denoted by Sn. The sequence of n binary coefficients  

(an-1,…,a1,a0) representing a polynomial f(x) is denoted by f. Additionally (to shorten 

the notation) a polynomial f(x) will be denoted as f. 

The multiplicative group 
*
2nF  of the field n2

F  is cyclic, i.e. there exists g∈ *
2nF  such 

that each element of *
2nF  is an exponent of g ( *

2nF ={gj: 0≤j<2n-1}) (cf. [6]). If 2n-1 is 

a Mersenne prime and p(x) of degree n is irreducible, then each element of *
2nF  (except 

for the identity) is a generator of the group 
*
2nF  (cf. [9]). If 2

n
-1 is not a Mersenne 

prime, generating a periodic sequence can be applied to check whether f(x)=x is 

a generator. 

The properties of reducible polynomials depending on its factors are described below. 

(a) Let a polynomial p of degree n be the product of different irreducible 

polynomials p1, p2, ..., pm of degrees n1, n2, ..., nm (n=n1+n2+...+nm), respectively. Then 

we can distinguish in the set S
n
 { } 12 m

2 + (1)
 groups with respect to multiplication modulo 

p (denoted *p). Let w={w1, w2} denote any partition of the set {p1, p2, ..., pm} into 2 

blocks. Let the set Xw1 consist of the elements of S
n
 that are divisible by polynomials of 

the set w2 and simultaneously indivisible by polynomials of the set w1. The set Xw1 is 

a group with respect to multiplication modulo p(x) (i.e. the following 4 conditions are 

fulfilled: closure under the operation *p, associativity of the operation *p, there is an 

identity in Xw1, for each element a in Xw1 there is an inverse of a in Xw1). We denote this 

group by (Xw1,*p). Similarly, the group Xw2=(Xw2,*p) consists of the elements of Sn that 

                                                
(1) { } 12)k,n(S 1nn

2 −== − , n>0, )k,n(S  is the notation for Stirling numbers of the second kind. 
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are divisible by polynomials of the set w1 and simultaneously indivisible by 

polynomials of the set w2. There are { }m
2  of such pairs. Neither Xw1 nor Xw2 has to be 

cyclic. If the identity of the group Xw1 is (an-1,...,a1,a), then the identity of the group Xw2 

is (an-1,...,a1,b), where a≡(1+b)mod 2. If, for instance, w1={p1, p3}, whereas w2={p2, p4}, 

then the identity of the group Xw1 is e=(p2*p4)
k
mod p, where k is the order of the largest 

subgroup of the group Xw1. The group A=(A,*p) consists of the remaining elements of 

the set S
n
. Its identity is e=(00..01). The group A does not have to be cyclic. In order to 

show that p is a reducible polynomial, it is sufficient to find an identity of any group Xw 

in the set S
n
, i.e. an element g that satisfies the following property 

(W1) g = g
2
mod p and g≠(00..01) 

Elements g that satisfy the property (W1) are denoted as =N. 

Example 1. Let a polynomial p of degree n be the product of different irreducible 

polynomials p1, p2, p3, p4 of degrees n1, n2, n3, n4 (n=n1+n2+n3+n4), respectively. 15 

groups with respect to the operation *p can be identified in the set S
n
. Let B1={a∈S

n
: 

p2p3p4|a ∧ ¬p1|a} (B1 consists of 12 1n −  elements). Then B1=(B1,*p) is a group. 

The identity of the group is e=(p2p3p4)
kmod p, where k= 12 1n − . This group is cyclic. 

The group is isomorphic with the multiplicative group 
*

2 1nF  of the field 1n
2

F , where 

(in proven cases) the function α1: B1→
*

2 1nF  (α1 is the reduction modulo p1) is an 

isomorphism. It is a well-known fact that irrespectively of what irreducible polynomial 

p of degree n we choose, we will obtain (with the accuracy of the isomorphism) the 

same field (cf. [6]). Let B2={a∈S
n
: p1p3p4|a ∧ ¬p2|a}. Then B2=(B2,*p) is a group. 

Groups B2=(B2,*p), B3=(B3,*p) and B4=(B4,*p) satisfy similar properties. 

Let C12={a∈Sn: p3p4|a ∧ ¬p1|a ∧ ¬p2|a}. Then C12=(C12,*p) is a group. The identity 

of the group is e=(p3p4)
k
mod p, where k is the order of the largest subgroup of the group 

C12. This group does not have to be cyclic. If the sequence (an-1,...,a1,a) is the identity 
of the group C12, then the identity of the group C34 is the sequence (an-1,...,a1,b), where 

a≡(1+b)mod 2. Let C13={a∈S
n
: p2p4|a ∧ ¬p1|a ∧ ¬p3|a}. Then C13=(C13,*p) is a group. 

The groups C13=(C13,*p), C14=(C14,*p), C23=(C23,*p), C24=(C24,*p), C34=(C34,*p) satisfy 

similar properties. 

Let D123={a∈S
n
: p4|a ∧ ¬p1|a ∧ ¬p2|a ∧ ¬p3|a}. Then D123=(D123,*p) is a group. 

The identity of the group is e=(p4)
k
mod p, where k is the order of the largest subgroup 

C123. This group does not have to be cyclic. Let D124={a∈S
n
: p3|a ∧ ¬p1|a ∧ ¬p2|a ∧ 

¬p4|a}. Then D124=(D124,*p) is a group. Groups D124=(D124,*p), D134=(D134,*p), 
D234=(D234,*p) satisfy similar properties. If the sequence (an-1,...,a1,a) is the identity of 

the group B1, then the identity of the group D234 is the sequence (an-1,...,a1,b), where 

a≡(1+b)mod 2. The group A=(A,*p) consists of the remaining elements of the set Sn, i.e. 

A=S
n
-{B1∪B2∪B3∪B4∪C12∪C13∪C14∪C23∪C24∪C34∪D123∪D124∪D134∪D234}. 

The group A does not have to be cyclic. Its identity is (00..01). 

Example 2. Let us consider a reducible polynomial p represented by the sequence 

(110001). The polynomial p is the product of irreducible polynomials p1 and p2 

represented by p1=(111), p2=(1011), respectively. Elements of the set S
5
 are given 

below. Each element of S
5
 was raised to the k-th power (for k=2, 3, …, 2

5
-2) modulo p. 
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We distinguished three groups A=(A,*p), B1=(B1,*p), B2=(B2,*p) (The elements are 

written in hexadecimal). 

A={01,02,04,08,10,11,13,17,1F,0F,1E,0D,1A,05,0A,14,19,03,06,0C,18}, 

e=(01)16=(00001)2, 

B1={1D,0B,16}, e=(1D)16=(11101)2, 
B2={1C,07,15,09,0E,1B,12}, e=(1C)16=(11100)2, 

00010(02): 01 02 04 08 10 11 13 17 1F 0F 1E 0D 1A 05 0A 14 19 03 06 0C 18 i=21 

11000(18): 01 18 0C 06 03 19 14 0A 05 1A 0D 1E 0F 1F 17 13 11 10 08 04 02 

00011(03): 01 03 05 0F 11 02 06 0A 1E 13 04 0C 14 0D 17 08 18 19 1A 1F 10 

10000(10): 01 10 1F 1A 19 18 08 17 0D 14 0C 04 13 1E 0A 06 02 11 0F 05 03 

00100(04): 01 04 10 13 1F 1E 1A 0A 19 06 18 02 08 11 17 0F 0D 05 14 03 0C 

01100(0C): 01 0C 03 14 05 0D 0F 17 11 08 02 18 06 19 0A 1A 1E 1F 13 10 04 

00101(05): 01 05 11 06 1E 04 14 17 18 1A 10 03 0F 02 0A 13 0C 0D 08 19 1F 

11111(1F): 01 1F 19 08 0D 0C 13 0A 02 0F 03 10 1A 18 17 14 04 1E 06 11 05 

01101(0D): 01 0D 02 1A 04 05 08 0A 10 14 11 19 13 03 17 06 1F 0C 0F 18 1E 

11110(1E): 01 1E 18 0F 0C 1F 06 17 03 13 19 11 14 10 0A 08 05 04 1A 02 0D 

10001(11): 01 11 1E 14 18 10 0F 0A 0C 08 1F 05 06 04 17 1A 03 02 13 0D 19 

11001(19): 01 19 0D 13 02 03 1A 17 04 06 05 1F 08 0C 0A 0F 10 18 14 1E 11 

00110(06): 01 06 14 1A 0F 13 08  i=7 

01000(08): 01 08 13 0F 1A 14 06 

01111(0F): 01 0F 06 13 14 08 1A 

11010(1A): 01 1A 08 14 13 06 0F 

10011(13): 01 13 1A 06 08 0F 14 

10100(14): 01 14 0F 08 06 1A 13 

01010(0A): 01 0A 17   i=3 

10111(17): 01 17 0A 

00001(01): 01    i=1 

//-------- 

00111(07): 1C 07 15 09 0E 1B 12  i=7 

10010(12): 1C 12 1B 0E 09 15 07 

01001(09): 1C 09 12 15 1B 07 0E 

01110(0E): 1C 0E 07 1B 15 12 09 

10101(15): 1C 15 0E 12 07 09 1B 

11011(1B): 1C 1B 09 07 12 0E 15 

11100(1C): 1C    i=1 

//-------- 

01011(0B): 1D 0B 16   i=3 

10110(16): 1D 16 0B 

11101(1D): 1D    i=1 

The group B2 is isomorphic with *

23F . Hence (as 23-1 is a Mersenne prime) each of its 

elements (except for the identity (1C)) is of the order 7 and may be its generator. 

The group B1 is isomorphic with 
*

22F . All its elements (except for the identity (1D)) are 

of the order 3. α1: B1→
*

22F  and α2: B2→
*

23F , where α1 is the reduction modulo (111) 

and α2 is the reduction modulo (1011), are isomorphisms. In this case, the group A is 

cyclic. It consists of 12 elements of the order 21, 6 elements of the order 7, 2 elements 

of the order 3, and 1 element of the order 1. In order to verify whether the polynomial 

represented by the sequence (110001) is reducible, it is sufficient to determine that 

(1C)=(1C)
2
mod p, ((01)≠(1C)) or (1D)=(1D)

2
mod p, ((1D)≠(01)). In case of the 

polynomial p, finding a maximum of 21 consecutive powers of any element (except for 

the identity) is sufficient to confirm that the polynomial is reducible, because 25-1 is 

a Mersenne prime and (for any g∈Sn) we obtain gi=ie faster than for i=25-1, where 

ie satisfies the property (W1) or ie=(00001)2. 
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(b) For certain i≥2 let a polynomial p of degree n be of the form p=(p1)
i, where p1 

of degree n1 is irreducible. Then, we can partition the set S
n
 into two subsets: the set A, 

which together with the operation *p forms the group (A, *p) (not necessarily cyclic) and 

the set of elements g that satisfy the following property 

(W0) gkmod p=(00..0) for certain 1<k≤2n-2. 

Elements g that satisfy the property (W0) are denoted as =Z. The identity of the group A 

is e=(00..01). In order to show that p is reducible, it is sufficient to find any element 

g=Z in the set S
n
. In the proposed algorithm, the smallest element g=Z whose square is 

0 is searched (i.e. element g
2
mod p=(00..0)). 

(c) Let a polynomial p of degree n be of the form tm1 s
m

s
1tt1 p...pp...pp −

+= , where 

polynomials pi (i=1, ..., m) are irreducible and pairwise different. Then the set S
n
 

contains elements that satisfy the property (W0) and elements that satisfy the property 

(W1), among other things. In order to show that the polynomial p is reducible, it is 
sufficient to find an element that satisfies the property (W0) or the property (W1) in the 

set S
n
. 

4 Polynomial factorization algorithm 
The algorithm presented below makes use of the properties described in Section 3. 

The operation used most extensively is squaring polynomials with binary coefficients. 

This operation was implemented with a minimal cost (see example 3). The presented 
algorithm uses a database (possibly empty) of previously detected irreducible 

polynomials. Finding an irreducible polynomial that is a factor of a polynomial p in the 

database significantly accelerates the process of factorization. 

Example 3. In order to square a polynomial p (in ordinary polynomial arithmetic), it is 

sufficient to insert 0 between each of its two digits, i.e. for p=(11011011101), 

p
2
=(101000101000101010001). 

The algorithm FReduc() factors a polynomial p into irreducible polynomials. For this 

purpose it uses two types of elements g=Z and g=N. These elements are searched in 

a certain subset of the set Sn among elements ending with the digit 1. The search range 

(subset) can be changed. In the paper, all elements =Z and =N are within the range. 

The algorithm finds the first element and stops searching. An element g=Z enables 

the factorization of a polynomial p into two polynomials, b and c (p=b*c), where b is 
a polynomial with single factors that appear in p an odd number of times, whereas the 

polynomial c consists of the remaining factors of p (see example 4(a)). The polynomial 

b is put on the list TR (reducible polynomials with single factors). For c, an element g=Z 

is searched, which is then put on the auxiliary list Th. An element g=N enables the 

factorization of a polynomial p into two polynomials, gcd and pr2 (p=gcd*pr2), where 
gcd=GCD(p,g). “GCD” is an abbreviation of the greatest common divisor. 

The polynomial pr2 consists of the remaining factors of the polynomial p. The form 

of a polynomial g=N ensures that GCD(gcd,pr2)=1. Both polynomials gcd and pr2 are 

put on the auxiliary list Th (see example 4(b)). Irreducible polynomials are put on the 

list TN. Elements from the list Th are analysed in a similar manner. These polynomials 

have lower degrees than p. Therefore, they require fewer number of calculations. Only 

the elements g=N are necessary for the factorization of elements from the list TR. 
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The algorithm determines that a polynomial p is irreducible when it is not in the 

database and neither an element g=Z nor g=N is present in the range set for p. Example 

4(c) shows the factorization of a polynomial p. A<< means “algorithm searches”, A>> 

means “algorithm determines”. 

Example 4. 

(a) Let p=11
5
*111

4
*1011*1101

6
. Then g=Z=11

3
*111

2
*1011*1101

3
. 

 It can easily be seen that g2mod p=0. In ordinary polynomial arithmetic: 

 b = g2/p = 11*1*1011*1, c = p/b = 114*1114*11016 and b*c = p. 

(b)  Let p=11
5
*111

4
*1011*1101

6
 and 

 g=N=1011*111011*1011011*10000110101*1101100001, 

  Then gcd=1011, pr2=11
5
*111

4
*1101

6
, 

(c) The factorization of a polynomial p according to the algorithm FReduc(). 

FMultiple(11011100101110101101000101110001101) // p=11
5
*111

4
1011*1101

6
 

 A<< g=Z=10100001110010010001                  // g=Z=11
3
*111

2
*1011*1101

3
 

 A>> b=11101(→TR) A>> c=1010100000100000101000101010001 
 //  b=11*1011        c=11

4
*111

4
*1101

6
 

 A<< g=Z=1110010011011101(→Th)                 // g=Z=11
2
*111

2
*1101

3
 

FMultiple(1110010011011101)                     // p=11
2
*111

2
*1101

3
 

 A<< g=Z=1011011001                             // g=Z=11*111*1101
2
 

 A>> b=1101(→TN) A>> c=1010000010001           // c=11
2
*111

2
*1101

2
 

 A<< g=Z=1100101(→Th)                          // g=Z=11*111*1101 

FMultiple(1001)                                 // p=11*111 

 A<< g=N=111 

FRedSing(111) pr1=1001 A>> gcd=111(→TN) A>> pr2=11(→TN) // pr1=11*111 

FSingle(1011) p=1011(→TN) Th: 

TR: , TN: 1101 111 11 1011 

An implementation of the factorization algorithm (in Cpp language) is presented below. 

(01) void Polyn::FReduc(String p, int n){String RE="TN: "; 

(02) TR=new TStringList(); TN=new TStringList(); Th=new TStringList(); 
(03) p=FDBase(p,n); Th->Add(p); 

(04) while(Th->Count){ 
(05)   p=Th->operator[](0); Th->Delete(0); FMultiple(p); FDelete();} 

(06) while(TR->Count){ 

(07)   p=TR->operator[](0); TR->Delete(0); FSingle(p);   FDelete();} 
(08) for(int i=0; i<TN->Count; i++)RE+=TN->operator[](i)+" "; 
(09) delete TR; delete TN; delete Th; 

(10) out<<RE;} 

//-------- 

(11) void Polyn::FMultiple(String p){ 
(12) String g, g2, g2p, gend, b, c; Boolean bl=false; 

(13) g="1"+toL("0",(p.Length()-1)/2); gend="1"+toL("0",p.Length()-1); 

(14) while(g!=gend&&!bl){ 

(15)   g=nextBin(g); g2=PMult2(g); g2p=toGFM2(g2,p); 
(16)   if(PEq(g,g2p)){ 
(17)     bl=true; Th->Insert(0,p); FRedSing(g); break;} 

(18)   else 

(19)     if(PEq(g2p,zero)){ 
(20)       bl=true; 

(21)       if(PInDBase(g)){TN->Add(g); break;} 
(22)       b=PDiv(g2,p); if(PInDBase(b))TN->Add(b); else if(b!="1")TR->Add(b); 

(23)       c=PDiv(p,b);  if(c=="1")break; 
(24)       g="1"+toL("0",(c.Length()-1)/2); gend="1"+toL("0",c.Length()-1); 

(25)       while(g!=gend){ 

(26)         g=nextBin(g); g2p=toGFM2(PMult2(g),c); 
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(27)         if(PEq(g2p,zero)){ 

(28)           if(PInDBase(g))TN->Add(g); else Th->Add(g); 

(29)           break;}}}} 
(30) if(!bl)TN->Add(p);} 
//-------- 

(31) void Polyn::FRedSing(String g){ 

(32) String pr1, pr2, gcd; 
(33) pr1=Th->operator[](0); Th->Delete(0); 

(34) gcd=GCD(g,pr1); pr2=PDiv(pr1,gcd); 
(35) if(PInDBase(gcd))TN->Add(gcd); else if(gcd!="1")Th->Add(gcd); 

(36) if(PInDBase(pr2))TN->Add(pr2); else if(pr2!="1")Th->Add(pr2);} 
//-------- 

(37) void Polyn::FSingle(String p){ 

(38) String g, g2, gend; Boolean bl=false; 
(39) g="1"+toL("0",(p.Length()-1)/2); gend="1"+toL("0",p.Length()-1); 
(40) if(PInDBase(p))TN->Add(p); 

(41) else{ 

(42)   Th->Insert(0,p); 

(43)   while(g!=gend&&Th->Count){ 
(44)     g=nextBin(g); g2=toGFM2(PMult2(g),p); 

(45)     if(PEq(g,g2)){bl=true; FRedSing(g);}} 

(46)   if(!bl){TN->Add(p); Th->Delete(0);}} 

(47) for(int i=0; i<Th->Count; i++){ 
(48)   TN->Add(Th->operator[](0)); Th->Delete(0);}} 

The FReduc() method of the Polyn class factors a polynomial p into irreducible 

factors. Class Polyn contains three lists of strings: TN (the list of irreducible factors 

of a polynomial p), TR (the list of reducible polynomials with single factors) and Th 

(the auxiliary list). The FDBase() method puts on TN divisors of a polynomial p 

which are present in the database and returns a polynomial indivisible by any of the 

irreducible polynomials (of degree ≤n) in the database. The FMultiple() method 

finds a polynomial g=Z or g=N for a polynomial p and factors p into two polynomials 

as described in the comment to the example 4. The range of search for an element =Z 

or =N is set in the line (13). The toL() method returns a sequence of characters given 

by the first parameter repeated n times (n is the second parameter). The nextBin() 

method determines the next element of the set Sn ending with the digit 1. 

The PMult2() method squares a polynomial g. The toGFM2() method reduces 

a polynomial g defined by the first parameter modulo a polynomial p defined by the 

second parameter. The method is optimized, i.e. instead of reducing g modulo p, the 

reduction of a suffix (of the length n) of a polynomial g modulo a certain imprint is 

performed. The same imprint is used for the reduction of all polynomials with the same 

prefix. The PEq() method checks if two binary sequences have the same values. 

The FRedSing()method (lines 31-36) factors a polynomial pr1 (taken from the 

beginning of the list Th) into two polynomials with the use of a polynomial g=N 

defined by the parameter (see comment to the example 4). The PInDBase() method 

checks if there exists a polynomial defined by the parameter in the database of 

irreducible polynomials. The PDiv() method returns the quotient of polynomials 

(without the remainder). The FMultiple() method is called until a polynomial p is 

factored into a certain number of polynomials formed from single irreducible factors. 

The FSingle() method factors a polynomial p that is the product of single irreducible 

polynomials. First it checks if p is present in the database and if it is not, the method 

searches next elements g=N and factors p into irreducible polynomials (as described 
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in the comment to example 4). When the condition in the line (43) is false, the list Th 

consists of irreducible polynomials only. Then the elements of Th are appended to TN. 

The FDelete() method deletes these elements from the list TN that appear on it 

multiple times and leaves these polynomials on lists TR and Th that are no longer 

divisible by any of the polynomials from TN. 

Example 5. Below, 6 consecutive polynomials (ending in the digit 1) of degree 43 are 

factored into irreducible polynomials. 

P1=11001101001010010010001001010001010010101101= 

=111*1011*1010111*1110011*111011001100101*1000111110001, 

p2=11001101001010010010001001010001010010101111= 

=11
3
*10110111001*110101101111*11110011010001111011, 

p3=11001101001010010010001001010001010010110001= 

=11
5
*111*10011*100101*110110001*10001100011110101011, 

p4=11001101001010010010001001010001010010110011= 

=1010100101*11111100011101011101100010101101111, 

p5=11001101001010010010001001010001010010110101= 

=101001*101010101011*1100101010000000100100000011 

p6=11001101001010010010001001010001010010110111= 

=11*111011*111010111*1110010100101*111000111010111001 

5 Elliptic curves. Applications of irreducible polynomials 
Definition 1. (cf. [5]) Elliptic curve over the field GF(2

n
) is the set of solutions 

(x,y)∈GF(2n)×GF(2n) of the equation 

   y2+xy = x3+ax2+b (b≠0) or           (1) 

   y
2
+cy = x

3
+ax+b  (c≠0)              (2) 

(where a, b, c∈GF(2
n
)) together with the unique point O, called the zero point. 

Let the set E(GP(2
n
)) be the elliptic curve described by the equation (1). The set 

together with the operation + specified below is a finite (abelian) group. All arithmetic 
operations are performed in GF(2n). 

Let P=(xP,yP), Q=(xQ, yQ) be points on the elliptic curve E(GP(2
n
)). 

• P + O = P 

• P + (xP, xP+yP) = O (-P = (xP, xP+yP)) 

• P + P = R = (xR, yR), where 

 xR=λ2
+λ+a, yR= 2

Px +(λ+1)xR, 
P

P
P

x

y
x +=λ  

• If P≠Q i P≠-Q, then P+Q = R = (xR, yR), where 

 xR=λ2+λ+xP+xQ+a, yR=λ(xP+xR)+xR+yP, 
PQ

PQ

xx

yy

+

+
=λ  

Example 6. As an example of using irreducible polynomials, the elliptic curve 

E(GP(2
11

)) was defined. The curve is described by the equation 

   y
2
+xy = x

3
+g

4
x

2
+1           (3) 



 

over the field GF(2

polynomial represented by p = (101100111111). The curve has 2116 points. They are 

shown on the diagram. 

Fig. 1. The elliptic curve E(GF(2
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Summary 

We consider polynomials p(x) over the 2-element field F2. If p(x) of degree n is 

irreducible, then a set of polynomials of degree <n together with operations (of addition 

and multiplication) modulo p(x) forms the finite field GF(2
n
). If p(x) of degree n is 

reducible, then the set of all polynomials of degree <n contains several groups with 

respect to multiplication modulo p(x). Properties of these groups are described in 

Section 3. In Section 4 is presented a polynomial factorization algorithm. Irreducible 

polynomials are widely used (for instance in cryptography) due to the possibility  

of an efficient representation of all the elements from GF(2
n
) on a fixed number of bits. 

Keywords: irreducible polynomials, factorization, cryptography, elliptic curves 

Własności wielomianów redukowalnych 

Streszczenie 

Analizowano wielomiany z jedną zmienną nad ciałem skończonym F2. Jeśli wielomian 

p(x) stopnia n jest nierozkładalny, to zbiór wielomianów stopnia <n wraz z operacjami 

(dodawania i mnożenia) modulo p(x) tworzy ciało skończone GF(2n). Jeżeli p(x) stopnia 

n jest rozkładalny, w zbiorze wielomianów stopnia <n można wyróżnić kilka 

podzbiorów, które wraz z działaniem *p (mnożenie modulo p(x)) tworzą grupy. 

Własności tych grup (oparte na wykonanych testach) opisano w sekcji 3. W sekcji 4 

zaproponowano algorytm faktoryzacji wielomianów. Wydajność zapisywania 

elementów GF(2
n
) na ustalonej liczbie bitów zachęca do wykorzystywania 

wielomianów nierozkładalnych na przykład w kryptografii. 

Słowa kluczowe: wielomian nieredukowalny, faktoryzacja, kryptografia, krzywe 

eliptyczne 
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