
Symulacja w Badaniach i Rozwoju
Vol. 2, No. 2/2011

 123

Kazimierz WORWA
Wojskowa Akademia Techniczna, 00-908 Warszawa, ul. Kaliskiego 2

E-mail: kworwa@wat.edu.pl

Using an optimization methods to selection
the best software developer

1 Introduction

As software becomes increasingly important in systems that perform complex and critical

functions, e.g. military defense, nuclear reactors, so too have the risks and impacts of

software-caused failures. There is now general agreement on the need to increase software

reliability and quality by eliminating errors created during software development. Industry

and academic institutions have responded to this need by improving developmental

methods in the technology known as software engineering and by employing systematic

checks to detect software errors during and in parallel with the developmental process.

A large number of analytical models have been proposed and studied over the last two

decades for assessing the quality of a software system. Each model must make some

assumptions about the development process and test environment. The environment can

change depending on the software application, the lifecycle development process as well

as the capabilities of the engineering design team [5]. Therefore, it is important for

software users and practitioners to be familiar with all the relevant models in order to

make informed decisions about the quality of any software product.

Let us define the terms such as software error, fault and failure [1]. An error is a mental

mistake made by the programmer or designer. A fault is the manifestation of that error in

the code. A software failure is defined as the occurrence of an incorrect output as a result

of an input value that is received with respect to the specification.

What precisely do we mean by the term failure? It is the departure of the external results

of system operation from user needs. So failure is something dynamic. A system has to be

operating for a failure to occur. The term failure relates to the behavior of the system.

Note that a failure is not the same thing as a bug or, more properly, fault. The very general

definition of failure is deliberate. It can include such things as deficiency in performance

attributes and excessive response time when desired, although there can be disadvantages

in defining failure too generally.

A fault in software is the defect in the program that, when executed under particular

conditions, causes a failure. There can be different sets of conditions that cause failures.

Hence a fault can be the source of more than one failure. A fault is a property of the

program rather than a property of its execution or behavior. It is what we are really

referring to in general when we use the term defect or bug.

Software reliability modelling has become one of the most important aspects in software

reliability engineering since first software reliability models appeared. Various

methodologies have been adopted to model software reliability behaviour. The most of

existing work on software reliability modelling is focused on continuous-time base, which

assumes that software reliability behaviour can be measured in terms of time. It may be a

Kazimierz WORWA

124

calendar time, a clock time or a CPU execution time [2, 4-8, 10]. Although this

assumption is appropriate for a wide scope of software systems, there are many systems,

which are essentially different from this assumption. For example, reliability behaviour of

a reservation software system should be measured in terms of how many reservations are

successful, rather than how long the software operates without any failure. Similarly,

reliability behaviour of a bank transaction processing software system should be assessed

in terms of how many transactions are successful, etc. Obviously, for these systems, the

time base of reliability measurement is essentially discrete rather than continuous. Models

that are based on a discrete-time approach are called input-domain or run-domain models

(see e.g. [4-8, 10]). They usually express reliability as the probability that an execution of

the software is successful.

In spite of permanent improvement of software project and implementation methods

which are used in a practice of a software development they still can not guarantee of

developing a complicated software system entirely free of errors. These errors appeared

during useful exploitation of software and they cause to arise some financial losses and

other difficulties. In order to minimize of scale such difficulties software users demand

from developers such reliable software as possible. Unfortunately, more reliable software

is more expensive so there is a practical problem to determine some compromise on both

software quality and cost requirements. In practice, determining such a compromise can

be easier if there are possibilities to estimate both software reliability level and his

development cost by means of appropriate measures.

The purpose of this chapter is to propose some formal way of determining software

developer by formulating and solving the bicriterial optimization problem will both

minimize the value of the number of software tasks which have incorrect realization

during some time period and minimize the value of the software development cost. The

method of determining the best software developer that is proposed will be illustrated by

the simple numerical example.

2 Mathematical model of the software exploitation process

We will consider some useful software that services arriving tasks. Each input task

involve a sequence of software operations, whereas an operation is a minimum execution

unit of software. The concrete sense of an operation is subject to application context. For

example, an operation can correspond to execution of a test case, of a program path, etc.

Some input data set is connected with every operation and operation consists in executing

of the software with that data set. An operation can be viewed as a transformation of an

input state to an output state. One recognizes the possibility of a software failure by noting

a discrepancy between the actual value of a variable occurring during an operation and the

value of that variable expected by users.

We can view the execution of a program as a single entity, lasting for months or even

years for real-time systems. However, it is easier to characterize the execution if you

divide it into a set of operations. Then the environment is specified by the operational

profile, where operational profile is a complete set of operations with their probabilities of

occurrence. Probability of occurrence refers to probability among all invocations of all

operations. In turn, there are many possible instances of operations, each called a run.

During execution, the factors that cause a particular operation and a particular run within

that operation to occur are very numerous and complex. Hence, we can view the

Using an optimization methods to selection the best software developer

 125

operations required of the program as being selected randomly in accordance with the

probabilities just mentioned. The runs within those operations also occur randomly with

various probabilities.

A run is specified with respect to the operation of which it is a part by its input state or set

of values for its input variables. Input variables are variables that exist external to an

operation and influence its execution. The input state is not the same thing as the machine

state, which is the much larger set of all variable values accessible to the computer. The

machine state also includes variables that do not affect a run and are not set by it.

Recurrent runs have the same input state. We judge the reliability of a program by the

output states (sets of values of output variables created) of its runs. Note that a run

represents a transformation between an input state and an output state. Multiple input

states may map to the same output state, but a given input state can have only one output

state. The input state uniquely determines the particular instructions that will be executed

and the values of their operands. Thus, it establishes the path of control taken through the

program. It also uniquely establishes the values of all intermediate variables. Whether a

particular fault will cause a failure for a specific run type is predictable in theory.

However, the analysis required to determine this is impractical to pursue.

It is noteworthy that such a way of software working is typical for greater part of software

which are exploited in practice. As typical examples can be use reservations programs,

inquiry programs, storage economy programs, registration and record programs and many

others.

Both the human error process that introduces faults into software code and the run

selection process that determines which code is being executed at any time and under what

conditions, and hence which faults will be stimulated to produce failures, are dependent

on an enormous number of time-varying variables. Hence, researchers have generally

formulated software reliability models as random processes in time. The models are

distinguished from each other in general terms by the probability distribution of failure

times or number of failures experienced and by the nature of the variation of the random

process with time. A software reliability model specifies the general form of the

dependence of the failure process on the factors mentioned. You then particularize it by

estimating its parameters.

It is assumed that tasks arrive to the software in a random way and time intervals τk

k=1,2,…, between succeeding tasks are independent random values with the same

distribution function G(t), t≥0.

Let L(t) mean a number of tasks which arrive to the software at time [0, t]. For t≥0 value

L(t) is a random variable, L(t)∈{1,2,3,…}. The process {L(t), t≥0} is a some stochastic

process with continuous time parameter and countable infinite set of states.

A result of the growing maturity of software development is that it is no longer adequate

that software simply works; it must now meet other customer-defined criteria. Software

development is very competitive, and there are many competent software developers,

spread throughout the world.

Surveys of users of software-based systems generally indicate users rate on the average

the most important quality characteristics as: reliability, rapid delivery, and low cost (in

that order). In a particular situation, any of these major quality characteristics may

Kazimierz WORWA

126

predominate. The quality of the software system usually depends on how much time

development (especially testing) takes and what technologies are used. On the one hand,

the more time people spend on development and testing, the more errors can be removed,

which leads to more reliable software; however, the testing cost of the software will also

increase. On the other hand, if the testing time is too short, the cost of the software could

be reduced, but the customers may take a higher risk of buying unreliable software [7].

This will also increase the cost during the operational phase, since it is much more

expensive to fix an error during the operational phase than during the testing phase.

When choosing a software developer the user is interested in a software quality (measured

for example by a failure intensity), a development time and a development cost. For the

purpose of this chapter a software developer will be characterized by a probability of

correct realization by the software of single task, i.e. probability of correct execution of

the software with single input data set. Let q mean this probability. Respectively, let

p=1–q mean a probability of incorrect realization of single task, whereas realization of

single task is incorrect if some errors appear during execution of the software with data set

connected with that task. It is obvious that probabilities q and p=1–q characterize software

developer. In general, value of q depends on the development methods and technologies,

the lifecycle development process as well as the capabilities of the engineering design

team.

Let N(t) mean a number of tasks which have incorrect realization during time period [0, t],

i.e. during service of which some software errors appear. If we assume that none task

which arrives to the software will be lost (system with an infinitive queue) value N(t) can

be determined as follows

∑

=

=
)t(L

0n

nXN(t) , (1)

where values nX , L(t)..., 1,2,=n are random variables with the same zero-one
distributions

q)0X(P ,p)1X(P nn ==== .

For a some natural number m random variable N(t) has following binomial distribution

 







<

≥







==

−

=

nm for 0

nm for qp
n

m

)n)t(N(P
nmn

m)t(L
, (2)

where n=0,1,2,... .

Taking into account (1) and (2) we can determine probability distribution function
of random variable N(t) as a border distribution of two-dimentional random variable
(N(t), L(t))

)m)t(L(P)nP(N(t)=n)=P(N(t)
0m

mL(t)
=⋅=∑

∞

=
= , n=0,1,2,... (3)

Considering prior assumptions probability P(L(t)=m) can be determined as follows [3]

 0,1,2,...=m (t), G - (t) G = m)=P(L(t) 1mm + (4)

Using an optimization methods to selection the best software developer

 127

where (t) Gm , 1m ≥ , means distribution function of random variable mt , that has the
form

∑

=

=
m

1k

kmt τ (5)

It is assumed that 1(t) G0 = and G(t)(t) G1 = .

Then, taking into account (2) and (4), we can determine probability distribution function
of random variable N(t) as follows

(t)] G - (t) G[qp
n

m
=n)=P(N(t) 1mm

nmn
+

−








, n=0,1,2,... (6)

A mean value of number of incorrect serviced tasks at time period [0, t] has a following
form

∑

=

=⋅=
m

0n

)n)t(N(Pn)]t(N[E (7)

where probability)n)t(N(P = is stated by (6).

For example, if t-
e-1=) t (G

λ , i.e. when random variables kτ , 1,2,...=k , have the
same exponential distribution with λ parameter, we will obtain

∑
∞

=

−−









nm

t
m

nmn e
m!

t)(
 qp

n

m
=n)=P(N(t) λλ

, n=0, 1, 2, …

from where, after simple transformation, we have

!n

e
t)(p=n)=P(N(t)

pt
n

λ

λ
−

, n=0,1,2 . (8)

Expression to calculate a mean value of random variable N(t) has in this case the form

tp)]t(N[E λ= . (9)

Using (6) we can determine probability of event which consists in no errors will appear
during useful exploitation of the software at time period [0, t]. This probability can be
obtained from (6) by taking n=0. Both mentioned probability and mean value of
number of incorrect tasks at time [0, t] in expression (7) can be used as reliability
measures of the software under investigation. It is worth to add that these measures -
unlike most reliability measures which can be found in subject literature, e.g. in [2, 6-7,
8] take into account not only reliability level of the software but circumstances of its
exploitation as well.

3 Formulation of a bicriterial optimization problem of choice of the

software developer

Mean value of number of incorrect serviced tasks during useful exploitation of the

software at a given time period, appointed by (7), can be used as one of criteria (quality

criterion) to determine a compromise which reconciles requirements of user of a software

regarding its both reliability level maximization and production cost minimization.

A practical problem of choice of the best software developer by a potential user of that

software will be considered. The user can choose one of some number possible developers

Kazimierz WORWA

128

of the software taking into account characterization of both software exploitation

circumstances and technology of software development.

Let I mean set of numbers all possible software developers

I = {1, 2, ...,i, ..., I}.

From software user’s viewpoint the i-th developer will be characterized by pair of

numbers (qi, ki), where qi means probability of a correct execution of the software with a

single input data set if the software is developed by the i-th developer, and ki means cost

of the software development by the i-th developer.

Because individual developers use different project and implementation methods, have

a different computer equipment, use different organization and management styles and

so on, characteristics qi, ki
can be different for every developer.

The software exploitation circumstances, i.e. circumstances in which it will be used,

will be characterized by means of function G(t) which is distribution function of time

intervals between succeeding demands of use the software. We still assume that time

intervals are independent random variables with the same distribution.

A choice which is made by the user will be characterized by means following zero-one

vector

)x,..,x,...,x,x(X Ii21=

where

 



=
 not if0

 developer th-i theby developed is softwarethe if1
xi , (10)

while

∑
=

=
I

1i

i 1x

. (11)

Expression (11) ensures that software is developed by exactly one developer .

Let
 (X)N t mean software reliability coefficient for choice X, that is interpreted as a mean

value of incorrect serviced tasks arriving to the software at time period [0, t].

According to (7) coefficient
 (X)N t can be determined as follows

E[N(t)]x(X)N
I

1i

it ∑
=

⋅=

, (12)

where value E[N(t)] is stated by (7) with substitutions pi, qi instead p and q respectively.

Let K(X) denote a development cost of the software for choice X. This cost can be

determined as follows

∑
=

⋅=
I

1i

ii kx)X(K , (13)

where ik
 means cost of the software developed by the i-th developer.

Using an optimization methods to selection the best software developer

 129

On the base prior assumptions and expressions that were obtained we can formulate

following bicriterial optimization problem of choice of software developer

)R,F,(X , (8)

where:

X is a feasible solution set which is defined as follows

(11)} (10), sconstraint withcomplies X :) x ,...,x ,...,x ,(x={X = Ii21X ;

F is a vector of quality coefficient which has form

K(X)) (X),(N = F(X) t ,

where values (X)N t , K(X) are determined by expressions (12) and (13)
respectively;

R is a so-called domination relation which is defined as follows

}yy ,yy :YY)y,y{(R
2
2

2
1

1
2

1
121 ≤≤×∈= ,)y,y(y

2
1

1
11 = ,)y,y(y

2
2

1
22 = ,

whereas Y is so-called objective function space

}X :K(X)) (X),(N={y=)F(= Y t XX ∈ .

The problem (14) is a bicriteria optimization problem with linear objective functions and

linear constraints. A solution of this problem can be obtained by using well known

methodology of solving multiple optimization problems [9]. According to that

methodology as a solution of the problem (14) we can determine:

• a dominate solution set,

• a nondominate solution set,

• a compromise solution set.

Taking into account that values of objective functions Nt(X) and K(X) are inverse (in sense

that if a value Nt(X) is decreased, the value K(X) is increased) it is reasonable to expect

that the dominate solution set will be empty. In a such situation practically recommended

approach is to determine a nondominate solution set. If this set is very numerous we can

narrow it down by determining a so-called compromise solution, i.e. such solution belongs

to the nondominate solution set that is a nearest (in sense Euclidean distance) to the so-

called an ideal point [9].

The best software developer that to be chosen after solving the optimization problem (14)

will both minimize the value of the number of software tasks Nt(X) which have incorrect

realization during time period [0, t] and minimize the value of the software development

cost K(X).

4 Numerical example

In order to illustrate of considerations that were described some simple numerical example

will be presented.

Let set of numbers of potential software developers have form I={1,2,3,4,5} and quality-

cost characterization of potential developers be as at the table 1.

Kazimierz WORWA

130

Tab. 1. Quality-cost characterization of developers

i 1 2 3 4 5
qi 0,50 0,80 0,85 0,90 0,95

ki⋅10
3
 5 6 6,5 9,5 12

For the quality-cost parameters that characterize of potential developers from Tab. 1 we

will solve the bicriterial optimization problem (14).

If we assume that time intervals between task arrivals to the software have exponential

distribution G(t)=1–e– λt, t≥0, we will obtain

∑
=

=
5

1i

iit pxt)X(N λ .

According to numerical values qi, ki, i∈I, , that were assumed the feasible solution set has

a form X={(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)}.

Tab. 2. Values of the objective function space

i 1 2 3 4 5

Nt(X) 105,00 42,00 31,50 21,00 10,50

K(X) 5000,00 6000,00 6500,00 9500,00 12000,00

A feasible solution set for this problem is a five-elements set of zero-one vectors. We

assume that λ=0,21 h
-1

 and t=1000 h. Objective function values for the feasible solution

set are presented at Tab. 2. It is easy to check that the dominate solution set of

Fig. 1. An illustration of an objective function space (unnormalized Y and

normalized Y)

the problem (14) is empty (it is because of objective functions Nt(X) and K(X) are inverse

in sense their values). In that case practically recommended approach is to determine

a nondominate solution set. It can be easy proved that above set X is a nondominated

solution set, i.e. every vector from X is a nondominated solution of the bicriterial

optimization problem (14). According to methodology of solving of multiple objective

decision problems in such a case we can find a compromise solution with reference to

some measure of a distance between so-called ideal point and particular points of the

objective function space Y [9].

Co-ordinates of the ideal point Y)y,y(y *
2

*
1

* ∈= are defined as follows:

)(XN t

)K(X

Using an optimization methods to selection the best software developer

 131

)X(Nminy t
X

*
1

X∈
= ,

)X(Kminy
X

*
2

X∈
= .

In accordance with assumed values of quality-cost parameters we will have 5,10y
*
1 =

and 5000y*
2 = .

In order to narrow down nondominate solution set we will determine a compromise

solution of this problem, i.e. such solution belongs to the nondominate solution set that

is a nearest (in sense Euclidean distance) to the so-called an ideal point [9]. For this

reason both objective functions (X)N t and K(X) determined by (12) and (13)

respectively, will be normalized by means of the following formulae [9]:

)X(N)X(N

)X(N)X(N
)X(N

minmax

min
t

t

tt

t

−

−
= ,

)X(K)X(K

)X(K)X(K
)XK(

minmax

min

−

−
= , (15)

where

)X(Nmin)X(N
tt

min = ,)X(Nmax)X(N
tt

max = (16)

)X(Kmin)X(Kmin = , ,)X(Kmax)X(Kmax = (17)

where X is a feasible solution set.

Tab. 3. Values of the normalized objective function space

i 1 2 3 4 5

)(XNt
 1,00 0,33 0,22 0,11 0,00

)K(X 0,00 0,14 0,21 0,64 1,00

As a result of the normalization both normalized objective functions)(XN t and)K(X
have values belong to range [0, 1].
It is easy to notice that in the example that is considered the ideal point ()(XN t ,)K(X)
is of the form)0 ,0())K(X),(XN(t = .
The searched compromise solution X∈o

X can be determined as follows

)y(FX
1 oo −= ,

where point Y)y,y(y 21 ∈= ooo minimizes the above norm, i .e .

yyminyy
*

Yy

* −=−
∈

o .

According to numerical values which were assumed we have 0.21) (0.22, y =o and
respectively)(0,0,1,0,0 X =o and it means that an optimal variant of the software
development is for i=3.

Table 2 presents the results of solving the optimization problem (14). The row (in bold)

that corresponds to the vector is the compromise solution of this problem, i.e. this is a

X∈∈∈∈X X∈∈∈∈X

X∈∈∈∈X X∈∈∈∈X

Kazimierz WORWA

132

such vector that is a nearest to the ideal point (0, 0), where a distance function

0)] (0,),)X(K),X(Nd[(t is of the form

22
tt)]XK([)]X(N[0)] (0,)),XK(),X(Nd[(+= . (18)

It is easy to notice that the vector)0 ,0 1, ,0 ,0(X =o complies following condition

0)] (0,)),XK(),X(Nd[(min0)] (0,)),XK(),X(Nd[(tt =oo (19)

Tab. 4. Compromise solution of the optimization problem (14)

i X1 X2 X3 X4 X5

1 1 0 0 0 0 105,0 1,00 5000,0 0,00 1,00

2 0 1 0 0 0 42,0 0,33 6000,0 0,14 0,36

3 0 0 1 0 0 31,5 0,22 6500,0 0,21 0,31

4 0 0 0 1 0 21,0 0,11 9500,0 0,64 0,65

5 0 0 0 0 1 10,5 0,00 12000,0 1,00 1,00

5 Concluding remarks

The chapter proposes some formal way of choosing a software developer by formulating

and solving the bicriterial optimization problem will both minimize the value of the

number of software tasks which have incorrect realization during some time period and

minimize the value of the software development cost.

An interpretation of terms ''task'' and ''service'' makes possibility to refer considerations

that were presented to almost every useful software, including so-called real time

software.

Practical usage of the method of determination of an optimal choice of a software

developer which was presented is possible if values qi, ki and distribution functions Gi(t),

i∈I are known. These values can be estimated by means of methods that are developed on

the base of software reliability theory (see e.g. [4, 6-8]).

Set of constraints which is used in bicriterial optimization problem (14) can be changed

according to current needs. In particular, that set can be completed by such constraints

which would guarantee that values of both software development cost and mean value of

tasks that are serviced incorrect would keep within the feasible values.

The method of choosing a software developer that has been proposed was illustrated by

the simple numerical example. For assumed values of quality-cost characteristics of

developers the best producer has been obtained as a compromise solution of the bicriteria

optimization problem (14).

References
1. IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard

610.12, 1990.

2. Konopacki G., Worwa K.: Uogólnienie modeli niezawodności oprogramowania
Shoomana i Jelinskiego-Morandy. Biuletyn WAT, Nr 12, 1984.

X∈∈∈∈X

)X(N t)X(N t
)X(K)X(K)]0,0()),X(K),X(N[(d t

Using an optimization methods to selection the best software developer

 133

3. Koźniewska I., Włodarczyk M.: Modele odnowy, niezawodności i masowej obsługi.
PWN, Warszawa, 1978.

4. Lyu M.R.: Handbook of Software Reliability Engineering. McGraw-Hill, New York,
1996.

5. Malaiya Y.K., Srimani P.K.: Software Reliability Models: Theoretical
Developments, Evaluation and Applications. IEEE Computer Society Press, Los
Angeles, 1990.

6. Musa J.: Software reliability engineering: more reliable software, faster and
cheaper. AuthorHouse, 2004.

7. Pham H.: System software reliability. Springer-Verlag London Limited, 2006.

8. Rykov V.V.: Mathematical and Statistical Models and Methods in Reliability:
Applications to Medicine, Finance, and Quality Control. Springer, 2010.

9. Stadnicki J.: Teoria i praktyka rozwiązywania zadań polioptymalizacji. WNT,
Warszawa, 2006.

10. Trechtenberg M.: A general theory of software reliability modeling. IEEE
Transactions on Software Engineering. Vo1.39, No. 1, 1990.

Summary

A practical problem of choosing a software developer is considered. This problem is

investigated from a user’s viewpoint, i.e. it is assumed that the software which is needed

should be not only reliable but as cheap as possible too. The purpose of the paper is to

propose some formal way of determining software developer by formulating and

solving the bicriterial optimization problem will both minimize the value of the number

of software tasks which have incorrect realization during some time period and

minimize the value of the software development cost. Some numerical example is

presented to illustrate of practical usefulness of the method which is proposed. The

exemplary bicriterial optimization problem is solved on the base of the general

methodology of solving multicriteria optimization problems.

Wykorzystanie metod optymalizacji
do wyznaczania

najlepszego producenta oprogramowania

Streszczenie

W artykule przedstawiono propozycję pewnego wskaźnika jakości programu,

w konstrukcji którego uwzględniono warunki jego użytkowej eksploatacji.

Dla zilustrowania przydatności skonstruowanego wskaźnika jakości programu w dalszej

części artykułu sformułowano dwukryterialne zadanie wyboru wariantu produkcji

programu, z kosztem produkcji i proponowanym wskaźnikiem jakości programu jako

kryteriami składowymi.

