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Natural frequencies of flexural vibration
of a ring with wheel-plate
as the Winkler elastic foundation

1 Introduction

The vibration theory of rings with wheel-plates as the elastic foundation has applications
in many fields of engineering including the civil engineering, mechanical egineering, and
others [1, 5, 8]. The fundamental theory of circular rings vibration is presented in [7].
In the paper [1] theory of curved beam with foundation modeling wheel—plate is used to
railway wheels vibration analysis. Free vibration of the Timoshenko beam interacting with
Winkler elastic foundation is considered in the paper [2]. Authors of paper [3] employed
theory of thin ring to obtain natural frequencies and normal modes of in plane vibration
of a circular ring with equi—spaced, identical radial supports. In the paper [4] the exact
solution for the free vibration of annular membrane system with Winkler foundation is
presented. The majority of previous works in the field present solutions for the free
vibration of the thin ring with the Winkler foundation as the wheel-plate [5, 8]. In the
present paper the in plane flexural vibration of a compound system consists of circular
ring and elastic foundation of a Winkler type, respectively, are analysed. At first the
vibration problem of the system is described by partial differential equations. The effect
of rotary inertia and shear deformation is included. The solution of the free vibration
problem is obtained by the separation of variable method. The other model is formulated
by using finite element (FE) method. The achieved results are discussed and compared
for these models. This work continues the latest author’s research related to vibration
of systems with elastic foundation (especially presented in the article [6]). Noticed
mistakes and faults in the paper [6] are rectified.

2 Formulation of the problem

Let us consider mechanical model of the system taking into account that it consists of
circular ring interacting with massless, linear, Winkler elastic foundation as a wheel—
plate. It is assumed that the neutral line of the ring has radius R and an element of the
ring, determined by angle @, displaces in the radial and circumferential direction (see
Fig. 1). It is additionally assumed that the ring is perfectly elastic and it has constant
cross—sectional area. The small displacements in these directions are denoted as u(6f)
and w(6yt), respectively. No damping cases are considered. According to the classical
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theory of vibrating thin rings, the equation of motion for the free in—plane flexural
vibrations in terms of the radial deflection u(6,7) can be written in the form

ring

foundation

Fig. 1. Model of the system.
Rys. 1. Model uktadu.
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where E is the Young’s modulus of elasticity, /; is the area moment of inertia of the ring
cross section, p is the mass density, A is the area of the ring cross section, k; and k, are
the radial and tangential stiffness modulus of a elastic foundation, respectively.

Then the Timoshenko’s theory is used to include the effects of rotary inertia and shear
deformation in the equation of motion of the system under study. The partial differential
equation of motion in terms of u(6,7), can be expressed in the form
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and k’ is the shear correction factor, G is the modulus of elasticity in shear. The rest of
the designations have the same meaning as for in previous case.
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3 Free vibration analysis

The objective of this section is the determination of the analytical solution of free
vibration of the system under study. The solution of Egs. (1) and (2) is assumed in the
form

u(0,t)=U(6)e'" (4)

where o is the natural frequency of vibration and i =+/—1 is the imaginary unit. After
substitution into the Eq. (1), it becomes

—+
de® 46"
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Substituting solutions (4) into Eq. (2) gives the following expression
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The general solution of Egs. (5) and (6) is assumed as
U(0)=D,sin(n6+¢), n=23,... (7)

where D; and ¢ are constants. When Eq. (7) is substituted into Eq. (5), it yelds the
natural frequencies of vibration as (thin ring theory)

~ EIL(n® —2n* +n2)+ R* n® + Rk,

2
w, = (8)
AR n? +1)
Substituting Eq. (7) into Eq. (6) gives the frequency equation (thick ring theory)
—n®+ 2=y ke Jn* ~(1+agk, +byk, Jn* —ag ke, +((co +do )n* + ()

+(pAag +dy + hok; =2 n? +(co + pAay + ok, )02 - codyn? +1)t =0, n=2,3,..
Equation (9) is a quadratic in a)f and hence two frequency values are associated with

each value of n. The smaller of the two w, values corresponds to the flexural mode, and
the higher value corresponds to the thickness—shear mode.

For both cases the mode shapes of the ring can be expressed as follows
u,(0.t)=D;sin(n@+@)e'™', n=23,... (10)

where D; and ¢ may be determined from the initial conditions of the ring system.
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4 The finite element technique

In the next instance the discrete model of the sytsem under consideration is formulated
using finite element method (ANSYS program). The elaborated FE model is treated as
an approximation of the analytical solution given by Egs. (6) and (9), respectively. The
natural frequencies and corresponding mode shapes of the system may be obtained by
using the block Lanczos method. The principal problem of this section is elaborated the
FE model of the elastic layer. The proposed FE model is prepared as follows. Ring is
modelled as the solid body with taking into account the structural geometry of the rim.
The foundation is modelled as the massless solid body with allowing for the structural
geometry of the system. The ten node tetrahedral element (solid187) with three degrees
of freedom in each node is employed to realize the system. The elaborated model is
displayed in Fig. 2 and it contains 41740 solid elements.

Fig. 2. Finite element model.
Rys. 2. Model MES uktadu.

The difference between the analytical and the FE solutions is defined by [4]
e, =0/ - o) of 100% (11)

where @' and @ are the natural frequencies of the FE and analytical models,
respectively. Eq. (11) is the so—alled frequency error.

5 Numerical computations

Numerical solutions for free vibration analysis of the circular ring with elastic
foundation models suggested earlier, are computed. For all results presented here, only
the first seven natural frequencies and mode shapes are discussed. Table 1 demonstrates
the parameters characterizing the system under study (the same as in the paper [6]).
Table 1. Parameters characterizing the system under study.

Tabela 1. Dane techniczne rozwazanego uktadu.

do/[m] | so[m] | R[m] | dg[m] | I;[m'] |A[m’]|plkgm’] | E[Pa] | v |K?
0.025 | 0.008 | 0.0875 | 0.03 |1.0417-10%| 2.10* | 7.83-10° |2.08-10""]| 0.3 | 5/6

In Table 1, dy; and s, are the depth and width of the ring, respectively; v is the Poisson
ratio; dys is the inner diameter of the foundation area. To compare the achieved results
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with the ref. [6], in the first instance, the computation for the both analytical models of
the system with different values of the k; and k,, respectively, are executed. For the
analytical approach the natural frequencies are determined from numerical solution of
Eqgs. (8) and (9), respectively. In the presented paper an analytical solution coming from
the Timoshenko’s theory is considered as more satisfactory solution. The results of the
calculation of the natural frequencies are displayed in Table 2. In each case the best
compatibility between analytical solutions is obtained for the first natural frequency.
For each case of k; and k, the difference between the results of the thick and thin ring
model, respectively, grows in parallel with the increase of the natural frequencies
number. Worth pointing out is the fact that for higher values of k; the less frequency
error for all frequencies is noticed (see last row of the Table 2).

Table 2. Results of computation related to analytical models.
Tabela 2. Wyniki obliczen otrzymane na podstawie rozwigzania analitycznego.

2 3 4 5 6 7 8

n
k IN/m?] | k, [N/m?]
natural frequencies of the system under study w, [Hz] (the Timoshenko’s theory )
0 0 1982 5296 9483 | 14243 | 19373 | 24739 | 30254
5-10° 4.10* 1983 5297 9483 | 14243 | 19373 | 24740 | 30254
6-107 6-10° 2172 5376 9529 | 14274 | 19396 | 24757 | 30268
0.82-10° | 6-10° 11387 | 12907 | 15227 | 18589 | 22763 | 27476 | 32534

natural frequencies of the system under study w, [Hz] (the thin ring solution )
0 0 2074 5868 | 11252 | 18197 | 26695 | 36742 | 48337
5-10° 4.10* 2076 5869 | 11252 | 18197 | 26695 | 36742 | 48337
6-107 6-10° 2258 5943 | 11293 | 18223 | 26712 | 36755 | 48347
9.82-10°| 6-10° 11463 | 13319 | 16617 | 21997 | 29447 | 38802 | 49928
frequency error ¢, [%]
0 0 4.64 10.8 18.65 | 27.76 37.8 4852 | 59.77
5-10° 4.10* 4.69 10.8 18.65 | 27.76 37.8 4851 | 59.77
6-107 6-10° 3.96 1055 | 1851 | 27.67 | 37.72 | 4846 | 59.73
0.82.-10° | 6-10° 0.67 3.19 9.13 1833 | 2936 | 41.22 | 53.46

Table 3 displays the results obtained for the FE model case. For this instance the FE
results are compared with both analytical solutions. More satisfied compatibility between
the thick ring solution and the FE representation is observed. In the case when the
foundation is omitted (i.e. k= k, =0), for both cases the frequency error grows in parallel
with the increase of the number of the natural frequencies. In the case when the foundation
is taken into consideration, for both cases the worst fit is achieved for the first natural
frequency. The best compatibility is observed between the thick ring solution and the FE
computation for the natural frequency w;. The smallest distinction between the thin ring
solution and the FE representation is noticed for frequencies w,, ws and wg, respectively.
These results are even better compared to the results from the thick ring solution (see 7"
and last row of the Table 3).
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Table 3. Results of computation related to the FE model.
Tabela 3. Wyniki obliczen otrzymane z modelu MES uktadu.

2 3 4 5 6 7 8

n

ke [N/m?] | &, [N/m?]
natural frequencies of the system under study w, [Hz] (the FE model )

0 0 2001 5358 9611 14458 | 19692 | 25175 | 30813
9.82:-10°| 6-10° 8692 12916 | 17221 | 21801 | 26665 | 31749 | 36984
frequency error ¢, [%] (related to the thick ring solution)
0 0 0.96 1.17 1.35 1.51 1.65 1.76 1.85
9.82-10° [ 6-10° -23.67 0.07 13.1 17.28 17.14 15.55 13.68
frequency error ¢, [%] (related to the thin ring solution)
0 0 -3.52 -8.69 | -14.58 | -20.55 | -26.23 | -31.48 | -36.25
9.82:-10°| 6-10° -24.17 | -3.03 3.63 -0.89 945 | -18.18 | -25.93
Presented results are better in comparison with the ref. [6] but still not satifactory. To
large difference between the obtained results are observable. In the Figs. 3—6 the mode
shapes of vibration corresponding to the presented pairs of the natural frequencies

obtained from the FE model are shown.

b)

a)

;i

Fig. 3. Mode shapes related to following frequencies; a) w,, b) w;.
Rys. 3. Postacie drgan wtasnych odpowiadajgce czestosciom; a) w,, b) ws .

Fig. 4. Mode shapes related to following frequencies; a) wy, b) ws.
Rys. 4. Postacie drgan wtasnych odpowiadajgce czegstosciom; a) wy, b) ws .
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Fig. 5. Mode shapes related to following frequencies; a) wg, b) w; .
Rys. 5. Postacie drgan wlasnych odpowiadajgce czestosciom; a) wg, b) w7 .

Fig. 6. Mode shape related to frequency ws.
Rys. 6. Posta¢ drgan wtasnych odpowiadajgca czgstosci wg.

6 Conclusions

The paper deals with the free in—plane flexural vibration of a rings with wheel—plate as
the elastic foundation of the Winkler type. The effect of rotary inertia and shear
deformation is comprised. The separation of variables method is employed to solve the
eigenvalue problem. The analytical solution of the system under study connected with
the thick ring theory is treated as the most satisfactory solution compared to the FE
representation which is treated as an approximation of the exact solution. The FE model
of the system under consideration is elaborated. The numerical solution results showed
that further investigations refered to the rings interacting with foundation are required.
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Summary

In this work the in plane flexural vibration of a circular ring with wheel-plate as a
foundation of the Winkler type is studied on the basis of the analytical method and
numerical simulation. To begin with the free vibration of the system is described by
partial differential equations. The effect of rotary inertia and shear deformation is taken
into account. The general solution of the analyzed problem is derived by the separation
of variable method. Then the solution by using finite element method is received. The
obtained results of calculation are discussed and compared for these solutions. FE
models are formulated by using ANSYS software.

Keywords: circular ring, Timoshenko’s theory, Winkler foundation, in plane vibration

Czestosci drgan wlasnych gietnych
w plaszczyznie pierscienia kota
o tarczy modelowanej podiozem sprezystym
typu Winklera

Streszczenie

W pracy analizowane sg drgania wlasne gietne pierscienia kolowego wspétpracujacego
z tarcza modelowang warstwg sprezysta typu Winklera. Prezentowane modele
matematyczne uktadu opracowano na podstawie klasycznej teorii drgan gietnych
pierScieni oraz metod¢ elementéw skonczonych. W modelu $cistym uwzgledniono
wplyw bezwladnosci obrotowej i odksztalcenia postaciowego. Analityczne rozwigzanie
drgan wlasnych uktadu otrzymano stosujac metode rozdzielenia zmiennych. Otrzymane
rezultaty (czgstosci wlasne i odpowiadajace im formy wtasne) poréwnano z rezultatami
otrzymanymi z metody elementéw skonczonych. Obliczenia MES wykonano w
programie ANSYS.

Stowa kluczowe: pierscien kotowy, teoria Timoshenki, podloze typu Winklera, drgania
gietne w plaszczyznie
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